Inflection and Agglutination : Challenges To Malayalam Computing
Santhosh Thottingal (santhosh.thottingal @ gmail.com , http://thottingal.in),
Swathanthra Malayalam Computing (http://smc.org.in)

Language Features
"In agglutinative languages the union of words may be compared to mechanical compounds, in
inflective languages to chemical compounds. --R. Morris. [1913 Webster]"

Malayalam is both agglutinative and inflective language. Most of the Indian languages, especially
south Indian languages has this feature. Based on a set of rules, in the context of tense,
singular/plural difference, gender etc, the root word get inflected to form new words. In addition
to this two or more words can form another single word based on another set of rules. These
characteristics of languages make the language computing challenging in various ways. This article
investigates the rules of this inflection and agglutination and explains how it is challenging to some
computer based language processing.

The inflective nature is defined in a logical manner in Sandhi Rules of Malayalam. Let us examine
the logical structure of a Malayalam word with a special emphasis on its string processing nature.

D VOO (@)d)®1W1m3

GalB@MENSIB:AN@I0 alBo

2fleIna og81® omelan-

21sQ afleIweHuoo

Gal@eanenz@englsmler-

HOMMEEO®) Gald®IMM]a0

@R®o ()@ 1Qogss]-

G2JAAN@IMoWHOAD Gald

-af} GRA 0320022 AUGM [()& (JMYEBBUB- GHO8aI1MIMIWo]

@JD®1 ag)am KMJ120DON]DE (@JO)fWo @21BaN1SI6110° 2 IB3YeNBIGMMD’ @)D @) WBBIT
621601388 WMJTVI(@alo @OAD 230210 TVIQo.

From the above definition of a Malayalam word let us derive a Regular Expression(Computational
representation of a string pattern) for a typical Malayalam word;

alBo= (&™) *[@mywo]

The above expression means a Malayalam word can be formed by any number(well, it is limited,
say, less than 10) of @Jg®1 and zero or one oo

Let us expand the regular expression following the three classification ARR defined for the Sandhi

Positional Classification
Based on whether the word is formed by @Jg®1 only or @e®1 and @mywo or multiple @Jom1
and @oyo.
a) a130eLy aWwl: (@e®)+ (o ywo)
Eg: 00 @d= aoo[@)@+ @3] @Jmywo]
b) a1zommyrvau: ((@Jgy)*

mailto:santhosh.thottingal@gmail.com
http://smc.org.in/
http://thottingal.in/

Eg: eaiemgooi= oae [@o@]+ ool [Jo,o]
6)040(0‘8% = 0a10® [(J®1] + ajl @]
¢) oemuawl: (@&®)*+ (Jmywo)
Eg: aemoo1@d = aeml[(@Je®1] + @role®l] + @3 @jmywol]]
CV (Consonant Vowel) Pair Based Classification
a) avleacuaw]l : [vowel]+[vowel]
Eg: nvt+@nei=aswe] ==> @oe:000+@0
b) auieaiyermavawl : [vowel]+ [consonant]
Eg: 00+ &:80= 008880 ==>@0:000+®
¢) alyermaviecuawl: [consonant]+ [vowel]
Eg: aem+mei= aaplel
¢) ayerzmavawl: [consonant]+ [consonant]
Eg: emei+nsml=omainem]
Changes to letters during Sandhi
a) Deletion - GeaIvOW]
JEE®1BAMa] Gl 1o
MoQ@o QIBDNNIHWIBI
@R 1HM TVIERIWIES
Qld0le@emg Mvawlw1ed

We can formulate the above rule in a logical way as follows
/=1 (pseudo-samvruthokaaram)+ [avieo] = auiGailamo($2)
[y [(samvruthokaram)+ [auieo] = auieaflamo($2)
where [auieo] = any of ["@n", "@ar", "om","o","9","9m", "g","ap)"," ag"," 0ag)"," 8", " 30"," 30"
[VIR2NamMe$2] = avaWIWI@ EMRINGE VIO VIO aflamo
Example: avioalamo(g)= <A
Illustration:
@R/ @D + MEl= @P®IE]
ad0jlagolt 9me= agoseng”
LEADIaH+ @Y= AVEAMIaHIENTD”

This is not simple. for example, consider ana:+ mMwmd = awlviead. There are hundreds of rules
and most of them have exceptions. We may need to Consider chillus also. Sometimes, the same
chillu may refer to more than one base letter.

FDOWE+ BRYE= AMIWOIY

MOWG+ @REL] = MIVOEL]

Note: There are some other rules in cenaiaqrvaw] for the @aa00ceal0. But in Unicode, the code
points are always for the letters with implicit @e®000. For eg: & , ee1, @ ...So it is easy to handle
such rules.
Examples:

@REHaf)IM” = @ReLIaN’

QIR+ af)BSI = AIR1OB:ESI

b) Insertion - @rywacvawl

Main rule:
m@@aﬂ% aVIOMVOGWINo
© QI Gal3@Y WLNINIGEL,
aJ@ajo ®ILINIYMINEME;1M3

@)oeaomasﬂcsel%amo;
adBBQJOERIAYL VIR0 AIMITI
QlH000 GalAQDOHIBBH.

Here is my Logical rules for this
[@oe1a1yuIeaflamo] + [V100] = @ + AVIGalamo($2)
[800ym0I0aflamo] + [uI0] = a1 + AVIBalamo($2)

o

where @oelalymuIealamo= ["=0",":1",":1"," 0", " 6", " o6x:"]
300§ VIO alamMo= ["o", ", o0, 0", "am", " azm] - Vowels pronounced using lips
Here in addition to vowel signs, we need to consider vowels themselves as well.
@)+ @RON=E1R)WON
ag)t+ BRYWI00=@PQYIWIV0=6af)@IW]0o

Illustration:
First Rule

HO+O8B = H0/QY 88

GaloI+ M= Galdd/ /o

AU H+@RY 0=l @I/ S0

o H+aERs=m1 Wo/s”

@M +@RAIN= ®maan/w/aIm

@aldEMM+o8s8 = csaj(acaan/@g/g%s

PO+ MG =606 H/ QY eng”
Second Rule

@ @B+6306Mo= @3/ 301d/ Mo

20@+ 9620 @M= n0®/0) M2 1maT

ad+@MI=ay al/mi’
Here we need clarification whether @w is @oelalyaquieaflamo O 60ayyauI0aflamo . Reason is AR
Rajarajavarma has given the following two examples under two of the above rules. This is a
phonetic problem. Hard to set a rule based on script.

&0+ O8B=50/ QY 88
®s+oam= ®s/aoyan

J® @I DD B0y 1D
Q)Majo MILINIZWINA

[@oelnlyauieaflamo] + 09 = [@oelalyavioaflamo] + @

OeH = @m%“
2l ss30M0= lﬂ«ﬂgmo.

This rule conflicts with the Kerala gov stylebook which says, in en#o0ot+99 @ Is not required

In the above rule there is a condition that it is pre-prathyaya. We can safely consider that any word
which starts with #e is a prathyaya. Since there is no root word which starts with @& in Malayalam

c¢) Duplication -gi@iacvauil
Rules

1. someaizomlsnel erElleel QI@6mMo 3Wn0eEMES13 MESIHB0. algl+dgl=alglass],
OEH G2D0=MEIG0”

2. 2J038TDHUWBABEUAHO QILEIRMo QAUAMIM3 MEZEsB0. BRI BT1=ERINI® 1G] O+ng=600mg’
3. oM, M, 010U B ONMOW 2JeBRUBARB0, BRYWITTHHIBINMVAM Mo, BRYWITTHI @I WIaO1d, (@ JCWIH
o)1 ANRHMHUWBEBo GUdaHo QIGBAN FAUIIGHOBBUY MSlex0. - This rule is complex to make in
computer logic, unless we can classify the first member of sandhi
4, Q_n%IBUB)UacBQ GUdaHo QIO BAUSAIBEMo MESIAR0. ald@d + dlenEl = aloddaslme] ald@d +
afl = al0@dasq |1
5 @Ry 9D ¢3 -HH0AD) Y QMO GUdaHo AUBAN HUB JDIQONIOL! &I BDOSlEB0 NI + HUd =
DODIANUD af + HUY = aHHUD
6. MoQY®I®Y aIBENIM GUdaHo MVIMIAF] (JMYWo AUMOIBI MEFHs30
7. @DLJa] MVAITVOD Mo (WO WIDOfMe GUdaHo AN FUAHUOBRSI0S1OBHWL] DeInGud +
2106Mo = DLING:UJ2I06Mo
aJB30ja13Om1e)8s £l AlalM J®JWEBUIES GLIaINILINOD l36BRUBH BREJ] MMMV af)ad
alo®am
G313 ©MIAQ DeInHU3 MalYleel BRA HUd Balanelo GRIda NIsHwlel

S +CHI0 =dHSBHIBI

af)®@1 +®1 =ag)o1»1

@S] +alls] =@nslails]
S af)@] @RS] af)aN1QI VLN 00 HSWQYD af)@1QYH: BRSIABD: af)aN1QUWOS WIDEHHBIOM”
@BROOEHINBIAT DD alB36813U3 MOSIBNITH®
Challenge is identifying whether the first word is a wo@- A good Database may be a solution but
not preparing such a database is not a trivial task.
8. oomoalzoMeel GrEIVInel aldemo WlidleIneeme;1®3 Moslasswle]
9. ez aIBqJo MoaY®R0sME1B8 GUINIBaRo DOSHSEBOE]. Computationally very difficult to
identify whether the word is Sanskrit or not and often a debatable subject.
10. (LoQJ®2am Y0 IBEMIMD GUdaHo 3WnIBee AIMI@ MESIESHWIe]

e) Substitution - @RG3WILAW]

Many of the rules in this category are word formation rules

For eg: @noo3+@am= @oa:Qa, calud+o@= eals, 6)(6)003+(T@O”=6)(6)O66Tnf)®(3v OU3+0= D61
So, not sure whether we need to consider them as important as others.

Language Processing

Searching

Searching basically includes a string comparison and sometimes sorting a collection on which the
search is to be done. It is used in many information retrieval applications. A few of them are listed
below

1. File search in a file system

2. Web search

3. Spelling checker

4. Grammar/Syntax checking systems

5. Word processors

6. Data mining

7. Input methods having auto completion options

The basic computational problems involved in a search are the following string processing
applications

a)String comparison

b)String sorting

So far search in Malayalam is done in the Latin way, where the inflectional nature of the language
is not at all considered. Let is examine the various features that Malayalam requires.
A search system should not:

a) fetch wrong search results
b) miss relevant data that actually matched to the search key

By search I mean an information retrieval process where we give one key to a information
collection and retrieve data that matches the given search key.

The current way of searching is a word is based on the exact match of the key word. For example
if we give a word "a10e1800s™, the search will fetch results containing exactly the word
"al0e1890s™. But as far as Malayalam is concerned a root word is used as such with out inflection
will be in few places. Most of the time the word will be used in its inflected form. For example our
search will not fetch any results about

..]a1021890s@ aj@o...]

..Ja10210905® OmEl0H ...]

..] aloeIsnIsI6Mm” shdoﬂm@ GHOg aum(csﬂagj@ﬁ(m@“.[...]
..Jat0e1e90g™|[...]

..]@e3a00 RN 2O 0 10PI89I50V @M ... |

..]a1oeIen0g oo |...]

..Ja10e1sneg 8@ avaimm [...]

..] 2102169051908 Mo ®al0eMIol...]

L I o I o I s B s B s B o Bl e |

The above are just a sample of texts that can be ignored by the exact word search that all of the
standard applications follows now. For example Google follows the exact search.

Consider the amount of data loss we are facing. We are not able to use the features of data mining
because of the features of our language! It is not only Malayalam that has this peculiarity. Most of
the Indian languages are more or less inflectional languages

Now, let us examin the possible ways to overcome this issue. Before that please not that there are
some applications where we need the exact search.

The below search strategies are for where the search is acting as a information retrieval process
based on a keyword.
Instead of using the exact search use other search types.

Starts with search:

Check whether the given word is the first characters of the string to be compared. For eg:

when we search oy we get a9snoelo, neoom’ avwle) @sesl, ae@ etc. Even though this looks
fine at the first sight, this is not applicable always and sometimes returns strings with completely
different meaning

For eg: ageninlenm is also a candidate for the search result for ae

Another important problem is, this kind of search is not acceptable for eenaiaqvaw), where the last
letters of the root word is modified using sandhi. ®39a006mo

ngcmmmsﬂ%daﬂoag does not starts with e)njcmmasmﬂ%dof
aldelendsolasao does not starts with a1oe1e9os”

Even though this kind of search is not optimal but better than the exact search, it is used in some
applications. One example is the search implemented in Unicode Malayalam Bible by Nishad
Kaippalli.

Contains search:

Check whether the given search key is present somewhere in the string to be compared. This has
all the disadvantages explained above and the search results are less perfect than starts with search.
Example: a¢ search will return results gomae, #em1dae, memomaewlad, oamdagada:0ene”etc. .
The webdunia search engine uses this kind of search strategy.

Stem search
Stem is the part of an inflected word which remains unchanged throughout a given inflection.
Suppose we have to search S in a set of text T[1..n]. Stem based search is as follows

search(S, T[1..n])= compare (stem(S), stem(T)[1..n])

This seems to be a perfect solution. But the computational cost is high. Stem analysis is still a
research area for many languages and for Malayalam. As far as I know it is still in its early stages,
Finding the stem of each word in the data collection is not a good idea and it is worst if the size of
the information pool is very high. More over, instead of depending on the data pools and its
indexed stems, it is desirable to have the implementation in the user agent side.

Grammar aware search or expanded search

This is a slightly modified way of approach 2. And we are using the assumption that the users
always knows the stem of the word!. Why we searched a1nei090s] o¢ etc instead of a1eion0s100g
or nvoom ? As language user we know the stem of a word most of the times and that doesn't
involve any computational process and it is fast!. So the approach is as follows

a. User enters a word S to be searched. The user agent creates various inflectional forms for that
stem using a set of affix rules. So from the string S , we arrived an array words S[1..n]. Now we
will give the array to search system. When we give multiple keys search systems uses "any of the
key" strategy. Of course there is a weight for the keys and the weight for the first key is more than
the second one. If we give the fist key as the users's input string S, that will give the search results
with S at the top

If used the word affix rules in the above algorithm. Affix rules is a set of rules that a language uses
for inflection by a sandhi with any of the strings presented in a file called affix file. The affix file
will usually contains all the suffixes that a language usually uses. The affix rules is a common part
of all spell check programs. So our search problem boils down to creating an affix file for
Malayalam. Basically it is a set of o y@sBud

But how to append an affix to a stem is determined by sandhi rules. So a computational
formulation of sandhi rules is a must. And this is a challenge.

Let us list the challenges we need to face creating such a list of affix rules

1. Formulating the sandhi and samasa rules:- As we saw in the logical formulation of 4 sandhi
rules, some of the rules in sandhi can be written in logical way. By logical I mean, they can be

written using the structural information of Jg®1 and @mywo. i.e by using the types of the ending
letters and starting letters. But at the same time there are rules which depend on the semantic forms
of the words as we saw in aile1 avaw). Determining whether a word is Sanskrit or not is simply
impossible considering the present computational linguistics research stage. Or we need to look for
any other workarounds. In addition to this all samasa rules also need to be handled

2. Nonstandard writing systems. This is mainly because of the orthographical reformations
happened in Malayalam. Since many people did not accept the reformation, they continued the
traditional writing rules/lipi. Because of this there is no unique writing system in malayalam.
Ambiguous representation of a language is not at all acceptable for programming language or any
software. We will try to list of some inconsistent standards in writing.

@RAIM, GRAIMD

309, H000

MO1OBH, MAIYD

@RELYIAIH, BRWYIal:Nd

29380, @0BWo

SHMDAI00, HHDMIN0

@AMo, A o

Conclusion

1. Structural processing of the words is not at all sufficient for Malayalam Computing. Linguistic
analysis of words is must.

2.A unique writing system and spelling system to make the language suitable for computational
processing is desirable. But language does not change in that way. we need to find out good
algorithms and dictionary based search.

3. More research and experiments on this topic is necessary and very importance since the
amount of digital Malayalam content in the internet is increasing day by day. And there is a huge
demand for more language processing and data mining tools in this language.

